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The problem of solving the Schrodinger equation and the more general Sturm-Liouville 
problem in the finite-difference approximation is considered with emphasis on the question of 
where to match inward and outward solutions. It is shown that the determination of the 
matching point is a variational problem. A modification of the usual energy correction 
method in which previously calculated eigenfunctions are projected out of the trial solution is 
described. An iterative scheme which should determine all eigenvalues below some prescribed 
upper limit is proposed, and its application in two sample cases is discussed. 

1. INTRODUCTION 

The problem of solving the Schrodinger equation and the more general 
Sturm-Liouville problem numerically is one that occurs commonly. The problem is 
usually solved either by replacing the equation with a finite-difference approximation, 
or by expanding the solutions in a fiiite basis and using algebraic techniques. Two re- 
cent applications of the latter method are in the work of Shore [ 11, using spline func- 
tions, and of Lin, using harmonic oscillator wave functions [2]. 

Various aspects of the finite-difference method have been discussed recently by 
Tobin and Hinze [3] and Wolniewicz and Orlikowski [4]. One approach to the finite- 
difference equation is to recognize that the basic equation (Eq. (3) below) is the 
algebraic eigenvalue problem for a tridiagonal matrix .and use one of the highly 
developed matrix diagonalization methods to solve-the problem. 

The widely used method developed by Cooley [5] also treats the finite-difference 
equation as a matrix equation but uses a specific method of Liiwdin [6] for obtaining 
an improved estimate for an eigenvalue from an initial estimate and emphasizes the 
use of the Numerov difference equation. The use of the various methods has been dis- 
cussed and compared recently by Shore [ 11 and by Wicke and Harris [7]. 

If preliminary estimates of the eigenvalues are known, Cooley’s method will, in 
general, be very effective. The purpose of this article is to discuss modifications of the 
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method that can be made when no preliminary estimates are known, and to present a 
systematic way of obtaining the solutions. 

In order to be specific, the dimensionless form of the Schrodinger equation on a 
finite interval IO, a 1, 

-4; + W) #Jx) = e,ctAx), 

d(O) = @(a) = 0, 
(1) 

will be discussed. The most general Sturm-Liouville problem can in fact be reduced 
by a change of independent variable to 

-y; + q(X) yi = lli r(X) yi3 (2) 

where r(x) > 0 and yi satisfies homogeneous boundary conditions y’(O) = ay(O), 
y’(a) =@(a). The modifications in the method needed to treat the general problem 
will be indicated briefly. 

In practice, the problem is often on the interval [O, co). This problem can usually 
be satisfactorily approximated by requiring 4(a) = 0, where a is sufftciently large, or 
by matching the solution to the known asymptotic solution, e.g., either an exponential 
or a Coulombic wave function. This problem will not be discussed in this article ex- 
cept to note that if the approximation #(a) = 0 is used, the energy correction given in 
Eq. (8) below can be applied to show that the error in the eigenvalue decreases as 
e -2ka, k* = - ei, if a is large enough that V(x) is negligible for x > a. 

In a numerical calculation, Eq. (I) is replaced by a difference equation, e.g., the 
lowest-order equation 

tin.i- I - 2dn.i + @n.i + I = h2(ci - en) 4n.ir (3) 

where pn,i, vi are the values of d,,(x), V(x) at N + 1 mesh points 0, h ,..., ih ,..., a, 
4 = dn.,v = 0 and Nh = a. The discussion here will primarily be based, however, on 
th”;tudifferential equation (1); derivatives and integrals are then to be replaced in ob- 
vious ways. 

The standard method of solving Eq. (1) is to consider the equation for a general e, 

-y” + V(x) y = ey, (4) 

and to obtain two solutions y,(x) and y*(x) satisfying the boundary conditions at 0 
and a, respectively, and to match the solutions at some intermediate point X; i.e., y, 
and y, are multiplied by constants so that y,(X) = y*(X). If e is close to an eigen- 
value, a correction de can be estimated from the difference in the slopes of y, and y2 
at X. A simple calculation, similar to that given by Hartree [ 8 l and Ridley 19 1, is as 
follows. Write 

-js;+ V(x)J-,=ey,. (5) 

-.r” t V(x) J’ = (e +- de) y. (6) 
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where yA(x) = yi(x), x ( X and JJ~(X) = y*(x), x > X and y is an exact eigenfunction. 
Multiply (5) by y, (6) by y,, subtract and integrate over [0, u]. The result can be 
written 

The second term under the differential on the left hand is continuous and integrates to 
0. The first term is discontinuous at X and integrates to 

(The contributions to the integral at 0 and LI cancel between the two terms because of 
the boundary conditions.) If y(x) is approximated by JJ~(X) in (7) the energy correc- 
tion estimate 

is obtained. 
One purpose of this article is to discuss the best choice for X, this question seems 

not to have been thoroughly treated previously. It wil be shown that the choice of X 
can be regarded as a variational problem, That is, the problem of determining de is 
formulated variationally; X can then be chosen to minimize the energy functional for 
the problem. It *i/ill also be shown that if X is chosen in this way, successive 
iterations for the eigenvalue will in principle converge downward to the ground state. 
Excited states can then be calculated with lower-lying known states projected out. 
The projected energy corrections will be calculated and a method that should 
calculate systematically all eigenvalues below any fixed maximum will be described. 
This method does not require any preliminary estimates for the eigenvalues. Two 
examples of the application of the method to problems from the recent literature will 
be described. 

A brief discussion of the use of the method with the Numerov difference equation 
has also been included. 

2. THE ENERGY CoRaEcnoN 

If e is an approximate value for an eigenvalue of Eq. (1) the correction to e of Eq. 
(8) can be obtained from the functions yi(x) and y*(x) in the following way. Define 
an approximate solution by 

Y*(X) = Y*(X) Y,(X), x < x, 
= YlW) Y*(X)3 x>x, (9) 
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where X is the matching point. The function y, is continuous and satisfies Eq. (4) but 
has a discontinuous derivative at X. The eigenvalue problem can be derived as the 
problem of minimizing the energy functional 

mJ1 = p b’(x)’ + WI YW’I dx (h’ Q!x 
0 I 0 

(10) 

To obtain an estimate of an eigenvalue of Eq. (l), the function v,(x) can be used as a 
trial function in Eq. (10). A straightforward calculation, making an integration by 
parts and using the fact that y, and y, satisfy Eq. (4), gives 

E = e + VY,(~ y2(.V D-*, (11) 

where W= Ye Y;(X) -J+(X) Y%X) is th e ( constant) Wronskian of y2 and y, and 

D* =~20* ~*~,(x)* k +~,(x)*j~v2(x)' tic (12) 
0 X 

The second term in Eq. (11) is the energy correction given in Eq. (8) apart from mul- 
tiplicative factors in the numerator and denominator. In the case of the more general 
Sturm-Liouville problem of Eq. (2), a factor T(X) would also be included in the in- 
tegrands in the denominator of Eq. (10) and in Eq. (12). 

This derivation of the energy correction gives an indication of how the matching 
point X should be chosen. One can regard X as a variational parameter in the ap- 
proximate solution yX(x), and, if the ground state solution of Eq. (1) is being sought, 
X should be chosen to minimize 

Ae = fYh(x) Y~GWD*. (13) 

It should be remarked that the choice suggested by Cooley is to choose X at the first 
maximum of the inward solution. In many cases this is close to the optimum choice. 

It is of interest to consider this result from a somewhat different aspect. It may be 
recognized that the function vx(x) in Eq. (9) is essentially the Green’s function for the 
operator 

e-V(x)+& 
In fact, 

yx(x) = WG(x, -9 

= W F(e, - e)-’ $iCx) #i(X), (14) 

(15) de = W’G(X, X)/D*. 
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Ae 

FIG. 1. A graph of de vs e at a fixed matching point. The slope is - 1 at e = ej and is +I at de = 0, 

e # e,. 

It is also straightforward to calculate 

0’ = 
I 
a G(X, x) G(x, X) G!X 

0 

= W* +Yej - e)-' #i(x)', 

from which we find 

de = [ C(ei - e)-’ #i(X)2] [ z(ei - e)-’ #i(X)‘] -‘. 
I i 

The denominator is the derivative of the numerator, suggesting that Eq. (16) is the 
Newton-Raphson estimate for de. That this is the case was shown by Cooley [5]. 
This is in the sense that a single of the Eqs. (3) fails to be satisfied at the i 
corresponding to X. The equation to be solved is then F(e) = 0, where F(e) is the 
error in this equation. 

It can be seen from (16) that if e is close to e,, de z e, - e since one term 
dominates the sums. The qualitative behavior of de as a function of e is shown in 
Fig. 1 for fixed X, the graph passes through the e axis with slope -1 at the ei; de is 
also zero at intermediate e values for which r,(X) or r2(X) is 0. 

3. CALCULATION OF EXCITED STATES 

The variational method for calculating excited states is to find them in order of in- 
creasing energy eigenvalues by projecting out of the trial wave function at each step 
the assumed known eigenfunctions of lower energy. This approach to the present 
problem can be taken and the eigenfunctions calculated in order of increasing energy. 

In order to project known solutions i,(x) out of yX(x) the overlap integral between 
them is required. It is seen from Eq. (14) that 

I a #i(X) YAX) do = Yei - 4- ' 403 
0 (17) 
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This result leads to a “projected” value for the energy correction, 

de, = [ Wy,(X) y&X) -c” W*(e, - e)-’ #i(X)2] Dp’, (18) 
I 

where 

Di = D2 - W2 x”(ei - e)’ 4&Y)‘. (19) 
i 

We adopt the notation that Cy represents the sum over states i that are projected out, 
and Ci represents the sum over all states except the projected states. If known states 
417 !+42s**r #,-I are projected out in Eqs. (18) and (19), e + de, provides a rigorous 
upper bound to e,. 

It is also possible to write de, in a form analogous to Eq. (10): 

de,, = [ x’(ei - e)- ’ #i(X)‘] [ C’(ei - e)-’ gi(X)2] - ‘. 
I I 

(20) 

The behavior of de, with e is qualitatively the same as that in Fig. 1 without the 
nodes at the projected ei values. 

4. CONVERGENCE OF THE SUCCESSIVE ITERATIONS 

It is seen from Eq. (13) that the sign of de is governed by WY,(X) y2(J) and 
therefore for a fixed e, de changes sign at a node of,y, or y,. A diagram showing the 
nodes of yi(X) and y2(X) and regions of positive and negative de in the general situa- 
tion is given in Fig. 2. It is known from the theory of ordinary differential equations 

FIG. 2. The shaded regions in the X-e plane show where de is negative. The curves bounding the 
shaded regions are the nodes of y,(x) and .vz(x). 
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that the nodes of y,(X) and y2(X) interlace, and that as e increases the nodes of 
y,(yZ) move to the left (right). The curves going upward to the left (right) in Fig. 2 
show the nodes of ul( -JJ~). As e passes through an eigenvalue the nodes coincide at the 
nodes of the corresponding eigenfunction. 

Ife,<e<e,+, there are 2n sign changes in de between X = 0 and X = a. For X 
close to 0, de -y,(X) y{(X) y2(X)* and since y,(X) and y;(X) have the same sign 
(yI(X)-cX), de> 0. S imilarly, for X close to a, de > 0. The regions in which 
de > 0 are therefore as shown in Fig. 2. In the case of more general homogeneous 
boundary conditions, the nodal curves intersect the lines X= 0 and X = a between 
the eigenvalues. The shaded regions then intersect the lines X = 0 and X= a in open 
intervals. 

It is seen from Fig. 2 that for a fixed e > e,, de is negative for some X value, and 
hence if de is minimized on X, successive iterations must approach a limit. It must be 
recognized that the negative de is not sufficient to guarantee that the limit is an eigen- 
value since de could conceivably approach 0 for e not an eigenvalue. If we recall, 
however, that de can be writtenf(e)/“(e) (see Eq. (16)) then 

which is 1 if de is close to 0 away from an eigenvalue. This indicates that a zero 
value of de away from an eigenvalue is unstable and, therefore, that successive itera- 
tions converge down to an eigenvalue. 

This conclusion does not hold if the projected energy correction is used. If, for ex- 
ample, $, is projected out, de, is increased for e > e, . This must decrease the shaded 
regions of Fig. 2, and the bottom shaded region disappears completely, since de, > 0 

FIG. 3. The shaded regions in the X-e plane show where Aep is negative if d is projected out. The 
shaded regions must be inside those of Fig. 2. 
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for e < e2. A detailed analysis (see the Appendix) of the behavior near the nodes in 
Fig. 2 shows that the behavior of de, must be as shown in Fig. 3 so that convergence 
downward cannot be guaranteed even when de, is minimized on X. 

The question of whether successive iterative values for e can cross an eigenvalue e, 
is of interest. If e is slightly above e,, it is seen from Fig. 1 that the next iterative 
value for e is below e, if de”(e) < 0. This can be seen to be possible by considering 
Eq. (16) for e close to e,, By picking the dominant terms #,(X)*/(e, -e) and 
(b,JX)*/(e, - e)’ out of the numerator and denominator, and expanding the 
denominator, it is found that 

de=e,-e+(e,- e)* $AX)-* x (e, -e)- ’ 4itx)” 

iitm 

+ We, - @). 

Therefore, the sign of de”(e) is governed by 

G,(X, Xl = )J (ei -em)-’ $j(x)2. 
ifm 

This is given by IlO] 

GltI(x, x) = #mtx) Wm(x) - VmCx) ul,(x) + c#m(X)2, (21) 

where v,,,(X) is a second solution of Eq. (l), satisfying #,,&,, - v,,#,, = 1 and 

c= I o* #mtx) uC,Cx) dx’ 

It is seen from Eq. (2 1) that G,(X, X) vanishes at the nodes of 4,. At a node 

= 1 - 2 
I 
LI #*(x)z dx. 

X 

The last quantity could vanish, but clearly only in special circumstances such as a 
symmetry in the problem and then only at one node. Therefore, normally de”(e) 
changes sign at a node of #,,, and can be negative at e = e,. 

This result shows that in principle successive iterations for the energy, using the 
unprojected de and minimizing on X, will converge to e, . In practice, of course, when 
e becomes slightly below e,, de may not be negative because of the finite sampling of 
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X values. The result also shows that the usual technique of calculating the unprojec- 
ted de at a fixed X value could possibly miss an eigenvalue. 

The question of whether energy iterations given by de, can also cross an eigen- 
value e, remains unresolved. It appears that this must be possible if e, is large 
enough but no general results have been obtained. 

5. A POSSIBLE PRACTICAL STRATEGY 

In this section a method will be described that should permit the systematic 
calculation of all the eigenvalues below some upper bound E. It appears to be 
difficult to construct a procedure that will guarantee downward convergence to the 
successive eigenvalues of the problem because there is no control on the sign of de,,. 
However, we can combine the considerations of the previous section with bounds 
determined by node counting to formulate the procedure. There are, of course, other 
possibilities, and the choice of a suitable method will depend on the particular 
problem. 

If y,(x) satisfies Eq. (4) for some e and has n nodes in [0, a] apart from the node 
at x = 0, then e is an upper bound for e,, e, ,..., e,, and a lower bound for e,, 1, 
e n+z,... . Therefore, intermediate results in an initial search for e, can be used to 
provide good starting estimates for the higher eigenvalues. This device of counting the 
nodes is the same as counting the sign changes in the Sturm sequence for the 
equation. 

The number of eigenvalues below E can first be determined by counting the nodes 
in y, (or yJ calculated at e = E. 

The ground state energy e, can then be found iteratively by beginning at E and 
using the energy correction de. This sequence must converge downward but can 
possibly converge to an eigenvalue e, # e, (even though theoretically it should not) 
because of the finite sampling of X values. If this occurs it is not serious; m can be 
determined by node counting and the search for e, continued starting slightly below 
e, and projecting out 4,. 

It may be remarked in passing that projecting out a known 0, repels e + de from 
e,. To see this write de = n/d and 

Ae,=[n-(e-e,)-*a*][d-(e-e,J2a2]-’, 

where a2 = ] W#,(X)]2. Then 

The coefficient of (e t de - e,) is positive. Therefore, if e + de > e,, de, > de, and if 
e+Ae<e,, de, < de. Therefore, to increase the rate of downward convergence, 
known states of energy e,,, > e should be projected out. 

When e, and 4, have been obtained, the remaining eigenvalues can be obtained 
iteratively as follows. Suppose at some step eigenvalues e, , e, ,..., e,-, , together with 
other possible eigenvalues e,, , em>,.., have been obtained. Then upper and lower 
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bounds for e, are known. These can be averaged to provide an initial estimate e for 
e,. The search for e, can then be carried out projecting out any known eigenfunctions 
4 ,,,, m > n. If at some step e becomes less than e, as determined by node counting, 
the calculation is repeated with the immediately preceding value of e but also pro- 
jecting out the known dm, m < n in this and subsequent steps. 

It can possibly happen that de, > 0, if as shown in Fig. 3, e is just below an e,. In 
this case, the average of the current upper and lower bounds should be used for the 
next iteration rather than e + de,. If this is done whenever e + de, exceeds the 
current upper bound for e,, a convergent sequence must in principle be obtained. 

When an eigenvalue e, has been obtained to the desired degree of accuracy, dm(x) 
is obtained as v,.Jx) and normalized. The accuracy of dm(x) can be perhaps improved 
by making one “inverse iteration,” i.e., by calculating 

I ” w, Y) 4,(Y) 4 
0 

(22) 

=Y+) j%(t) hit) dt +Y,(x) jkt) An(t) dt 
0 x 

and renormalizing. This essentially multiples any erroneous component #, in Qjm by 
(e - emMen - 4. 

6. NUMERICAL EXAMPLES 

The procedure outlined in the previous section has been applied to two examples 
that have been considered recently in the literature. The results of these calculations 
will be described to illustrate some of the points that have been made in the discus- 
sion. In both cases, y = 0 at the end points. 

One problem is essentially the same as the example of Wicke and Harris [7] (WH) 
for which the potential has two minima with a large repulsive region between them 
which may complicate the solution of the problem. The equation can be placed in the 
dimensionless form of Eq. (1) with 

V(x) = 3906.25(1 - exp(2.3237 -x))’ 

+ 1250 exp(-83.363(x - 2.47826)*), (23) 

1.5489 < x ( 3.87227. In comparison with the WH example, the variable x is 
1.5489R (R in A), and the eigenvalues are one-eighth the WH energies (expressed in 
cm-‘). However, the energies are not strictly comparable, because the potentials are 
not exactly the same. 

The problem was solved on this interval with 201 uniformly spaced mesh points 
using the lowest-order integration formula Eq. (3) to calculate y, and y, for each e 
value. The energy correction de (or de,) was calculated at each mesh point and the 



TABLE I 

Successive Iterations for the Eigenvalues in the WH Problem 
with the Potential of Eq. (23)” 

I 1200.000 40.99 

2 1139.012 6.374 

3 1132.638 a.7758 

4 1131.862 -1.601 

5 1 130.260 -2.973 

6 1127.287 A.979 

7 1 122.308 -7.240 

8 1 115.068 -3.821 

9 1 I 11.247 4.7281 

10 I 110.519 -1.572 

I1 1108.947 -3.371 

12 1105.576 -7.470 

13 1098.105 -17.24 

14 1080.869 -38.17 

15 1042.699 43.85 

16 978.845 -72.13 

17 906.7 19 -39.23 

18 867.485 40.14 

19 807.345 49.89 

20 737.458 -78.38 

21 659.077 45.61 

22 593.468 -49.72 

23 543.747 -74.11 
24 469.641 41.57 

25 408.067 -7.919 

26 400.148 0.2 133 
27 400.361 0.14180-02 

28 400.363 0.58 140-07 

29 
30 
31 
32 
33 
34 
35 

36 
37 
38 
39 

N= 2 E = 400.36260 

396.359 -60.14 1 
336.216 -82.45 1 
253.767 48.04 1 

185.730 -21.39 1 
164.342 -1.295 1 
163.046 4.41410-02 1 
163.042 -0.42000-07 1 

N=l E = 163.04226 

506.694 25.52 2 
532.217 -1.533 3 
530.684 4.67480-02 3 
530.677 4).1291D-06 3 

N=3 E = 530.67727 

e de NN MPT 

9 
9 
8 
8 
8 
8 
8 
8 
7 
7 
7 
7 
7 
7 
7 
7 
6 
5 
5 
4 
4 
3 
3 
2 
2 
1 
1 
1 

39 
41 
82 
82 
82 
96 
51 
42 
95 
95 
95 
95 
95 
95 
42 
69 

110 
97 
66 
66 

101 
101 

63 
63 
61 
59 
59 
59 

e de NN MPT 

62 
62 
62 
62 
62 
62 
62 

100 
100 
100 
100 

40 626.272 16.22 3 45 
41 642.494 -0.8941 4 45 
42 641.600 -0.31980-02 4 45 
43 641.597 -0.40540-07 4 45 

N=4 E = 64 1.59686 

44 772.402 -79.99 5 66 
45 772.402 -11.98 5 110 
46 760.422 -0.6635 5 110 
47 759.758 -0.17850-02 5 110 
48 759.756 -0.12820-07 5 110 

N=5 E = 759.75628 

49 887.102 -29.55 6 109 
50 887.102 -3.526 6 41 
51 883.576 -0.58620-01 6 41 
52 883.518 -0.15540-04 6 41 
53 883.518 -0.11450-11 6 41 

N=6 E = 883.5 1759 

54 942.782 10.58 6 118 
55 953.363 -0.4980 7 118 
56 952.865 -0.12640-02 7 118 
57 952.864 -0.80820-08 7 118 

N=7 E = 952.86362 

58 1113.158 -1.377 8 42 
59 1113.158 -1.137 8 80 
60 1112.021 -0.61160-01 8 79 
61 1111.959 -0.15730-03 8 79 
62 1111.959 -0.10340-08 8 79 

N=8 E= 1111.95934 

63 1135.825 -1.957 9 51 
64 1135.825 -1.612 9 126 
65 1134.213 -0.29480-01 9 126 
66 1134.184 -0.94560-05 9 126 

N=9 E = 1134.18358 

” The difference equation is the lowest-order Eq. (3). 
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minimum value chosen. Trapezoidal integration was used to calculate D2, and the dif- 
fmxe approximation [.Y*,i(y,,j+* --yl.i-l) - yl,i(Y2,i+, -Y*,i-1)]/2h was Used to 

calculate W. This is constant for the difference equation (3). All the eigenvalues 
below 1200, of which there are 9, were calculated. The convergence requirement was 
/de/e] < lo-‘. The calculation was made in 16-decimal-digit arithmetic. 

The results of the 66 successive iterations are shown in Table I. The number of 
the iteration, e, de (or de,), number of nodes (NN) in y, (or yz) and matching point 
(MPT) are given. It should be noted that NN is the index of the e, immediately below 
e; the apparent discrepancy between NN and n at, e.g., step 28 occurs because de is 
positive, i.e., e < e,. The following remarks illustrate some of the points made in the 
discussion. 

I. At 3 and 9 the successive iterations for e, tend to become “stuck” in the 
neighborhood of e, and e, but eventually cross them. 

II. At 26, de > 0, and the iterations converge to e2. This would have been 
avoided if a finer mesh, on which a negative value of de could be found, had been 
used. 

III. At 29, e is chosen 1 % below e2 and de, with #2 projected out is calculated. 

IV. At 36, 40, etc., the average of previously calculated upper and lower bounds 
provide reasonable starting estimates for the calculation of e3, e4,... . For example, 
the e value at 36 is the average of the e values at 23 and 24. Therefore, all the itera- 
tions for e, are not wasted. 

V. At 44, 49, 58, and 63, e + de falls below the e, being calculated. Therefore, 
at the next step the same e, but de with lower states projected out, is used to provide 
an upper bound for e,. This demonstrates that the projected energy correction is 
useful in obtaining a convergent scheme. 

The problem of Wolniewicz and Orlikowski [4] (WO) is dimensionless, with the 
potential 

V(x) = 200 [3x4 - 6x2 - 1 ] (24) 

on the interval [-2, 21. This problem is numerically difficult because the lower levels 
are almost twofold degenerate. This is because the potential is essentially composed 
of two almost completely isolated identical harmonic oscillator potentials centered at 
x = f 1. The lowest levels e, and e, are degenerate to about one part in 1014. 

The lowest six levels, below -500, were found in the same way as in the previous 
example, on a mesh of 201 points. An important change was that the convergence 
condition was made much more stringent, to IAe/el ( 10-i’. This is important in or- 
der to split the levels; calculations with a less stringent condition encountered con- 
vergence difficulties. The results of successive iterations are given in Table II. 
Remarks similar to those concerning Table I can be seen to apply to these results. 
The large number of digits in the results is given only to show the degree of 
degeneracy. 
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TABLE II 

Successive Iterations for the Eigenvalues in the WO Problem 
with the Potential of Eq. (24) Using the Lowest-Order Difference Equation 

31 

- 

I 
2 
3 
4 
5 
6 
1 

8 
9 

10 
II 
12 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
21 
28 
29 

e Ae NN MPT 

-500.000 -I 7.96 6 139 
-5 17.964 -27.41 6 158 
~545.430 -20.01 6 45 

-565.436 p.6466 6 47 
-566.082 .1892D~Ol 4 47 
-566.063 .1984Dm04 4 47 
-566.063 -. 13540-06 5 101 
-566.063 -.Y 7870-07 5 101 
-566.063 -.2862D-07 5 101 
-566.063 -. 16900-08 5 101 
-566.063 -.54100-l 1 5 138 
-566.063 .1798D-13 4 142 

il;= E = -566.0633800189521 

-571.724 4.946 4 58 
-576.670 -9.754 4 58 
-586.425 -18.68 4 47 
605.103 -28.75 4 47 
-633.848 -20.62 4 47 
454.465 -12.94 4 52 
-667.403 -23.81 2 52 
-691.212 -3 1.89 2 52 
-723.106 -22.93 2 52 
-746.039 -5.35 1 2 52 
-751.390 -.1899 2 52 
-75 1.580 -.2 1860.03 2 52 
-751.581 -.2887D-09 2 62 
-751.581 -.29260-l I 1 101 
-75 1.58 1 -.2376D- 11 1 101 
-75 1.581 -.9633D-12 1 I54 
-751.581 -.6553D-13 1 153 

N= I E=-751.5805105919228 

30 
31 
32 

33 -660.934 4.087 2 143 
34 -656.847 -.I421 4 143 
35 656.989 -. 18990-03 4 143 
36 -656.989 -.909OD-09 3 101 
37 -656.989 -X5250-09 3 I01 
38 -656.989 -.3999D-09 3 101 
39 -656.989 -.543OD-10 3 101 
40 -656.989 -.835 lD-12 3 163 
41 -656.989 .1019D-I3 2 160 

42 -656.980 -.95OYD-14 4 52 
43 -656.989 -.9493D-04 4 143 
44 -656.989 -. 16870-09 4 137 
45 4156.989 -.3426D-13 4 58 

46 -565.750 -.3 189 6 155 
47 -565.750 -.3117 6 138 
48 -566.06 1 -.2183Dm02 6 138 
49 -566.063 -. 10540-06 6 55 
50 -566.063 -.6043D-13 6 41 

e de NN MPT 

-75 1.58 I -. 14420-09 2 142 
-751.581 -. 13900-09 2 142 
-751.581 .9254D- 13 1 154 

N=2 B=-751.5805105919111 

N=3 E = 456.9889664473616 

N=4 E = -656.9889664436041 

N=6 E =-566.0633794769586 

Wolniewicz and Orlikowski suggest that the symmetry condition 4”(x) = f 4,(--x) 
provides a good test of the accuracy of the computed eigenfunctions. The solutions 
found satisfied this condition to better than 5 % at the maxima of [#,,I. The degree to 
which it is satisfied seems to be governed by the degree of precision in the determina- 
tion of the eigenvalues. 

Wolniewicz and Orlikowski recommend that for a double minimum potential one 
should integrate through the barrier in the direction of increasing 1~1. The results of 
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the WH problem confirm this. In every case except it = 9, X is on the side of the 
barrier in which 1~1 increases. In the case n = 9, the recommendation is not ap- 
plicable because & has a node very close to the maximum. The recommendation does 
not apply to the WO problem because of the symmetry of the potential. 

The calculations in these examples are subject to technical problems because the 
very strong repulsive regions cause very rapid exponential growth and possible over- 
flows. These are readily avoided by scaling the solution for J,.~ or yz.,, down if 1 .v~.,~ 1 
becomes too large and setting any exceedingly small values to 0. Normally, the in- 
tegration is in the direction of exponential increase and is stable. However, when e is 
very close to an eigenvalue, the solutions y, and y, may become very close to zero at 
a and 0, respectively, and loss of significant digits can cause spurious values for de. 
This problem can be avoided by calculating W afresh at each mesh point rather than 
treating it as a constant. 

The value of 0; in Eqs. (18) and (19) is in theory positive. However, it can happen 
that rounding errors can give slightly negative values at certain X values and com- 
pletely spurious Aep; these should be checked for and rejected. 

7. THE NUMEROV EQUATION 

A widely used improvement on the lowest-order recurrence relation, Eq. (3), is the 
Numerov equation, which can be written 

‘i-1 - 2zj + zi + 1 = h2(ui- e)y,, 

zi= \I -h2(ui-e)/12\yi. 

This can be expressed in the form of a generalized eigenvalue problem 

(25) 

(261 

Ay = eBy, (27) 

where A and B are both tridiagona!, and B is symmetric and positive definite. The 
Numerov equation is an improvement on the lowest-order equation because the error 
is of order h6 rather than h4’ In the work of Cooley an explicit correction de for the 
Numerov equation is developed. This differs from the correction of Eq. (8) by a term 
of order h4. The error in the eigenvalues is of order h4 rather than h* 11 1. 

The methods described have been applied also to the Numerov equation. There are 
two ways to do this. One is to solve Eqs. (25) and (26) and calculate de or de,, in the 
same way as before. This is straightforward and the only change is that the 
Wronskian W is no longer constant because of the change in difference equation, and 
must be calculated at each mesh point. The second way is to solve instead for zi: 

‘i-l - 22, + Zi+ ] =h2(u,-e)l! -h2(u,-e)/12)-‘zi. (28) 

This is of the form of Eq. (3) with e regarded as a nonlinear parameter. 
In the two examples considered the second approach proved to be somewhat better 



TABLE III 

Successive Iterations for the Eigenvalues in the WH Problem 
Using the Numerov Equation in the Form of Eq. (28) 

e de NN MPT 

I 1200.000 -58.2 I 9 39 

2 1141.789 -5.091 9 41 

3 1136.699 0.27900-01 8 82 

4 1136.727 0.544lD~Ol 8 82 

5 1136.781 0.1035 8 .82 
6 1136.884 0.185 I 8 82 

7 1 137.070 0.2787 8 82 

8 I 137.348 0.2442 8 82 

Y 1137.593 0.46850-01 8 119 

IO 1137.639 0.86.290-03 8 119 

II 1137.640 0.86770-05 8 II9 

I2 
I3 
14 
15 
I6 
I7 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

N = 9 E = 1137.64026 

I 126.264 -26.7’) 8 
1099.475 -5 1 .Y2 7 
1047.555 -82.70 7 
Y64.854 -56.72 7 
YO8.135 -53.67 6 
854.468 44.98 5 
789.487 -90.75 5 
698.740 41.66 4 
637.077 -67.55 3 
569.529 -78.88 3 
490.649 -76.17 2 
414.482 -13.91 2 
400.567 0.4131 1 
400.98 1 0.77340-02 1 
400.988 0.33 100-04 1 
400.988 0.13370-06 1 

95 
95 
69 
70 

110 
97 
66 

101 
101 

63 
63 
61 
59 
59 
59 
74 

28 
29 
30 
31 
32 
33 
34 
35 
36 

‘Y = 2 E = 400.98827 

396.978 -1 1.30 1 
385.678 -48.04 1 
337.636 -86.87 1 
250.765 47.78 1 
182.984 -18.85 1 
164.134 -0.9552 1 
163.179 4.34590-02 1 
163.175 -0.48470-05 1 
163. I75 -0.67540-08 1 

N=l E= 163.17518 

530.089 0.7349 2 
530.824 a.371 70-03 3 
530.823 4.52490-06 3 

60 
62 
63 
63 
62 
62 
62 
64 
73 

31 
38 
39 

100 
100 

89 

N = 3 E = 530.82344 

40 
41 
42 
43 
44 
45 

46 
47 
48 
49 
50 

51 
52 
53 
54 

55 
56 
57 
58 
59 

60 
61 
62 
63 

e de NN MPT 

667.909 -70.82 4 101 
667.909 -22.34 4 46 
645.574 -2.322 4 45 
643.25 1 4.34860-01 4 45 
643.216 4.24030-03 4 45 
643.2 I6 4). 16280-05 4 39 

N = 4 E= 643.21619 

744.1 I4 16.Y7 4 I10 
761.089 a.8286 5 I10 
760.260 ~S3120~02 5 110 
760.255 4.18340-04 5 1 IO 
760.255 4.62990-07 5 88 

N=5 E = 760.25458 

881.301 5.353 5 40 
886.654 4.61060-01 6 40 
886.593 -0.58761).03 6 40 
886.593 -0.55090-05 6 39 

N = 6 E = 886.59269 

836.494 18.74 6 118 
955.235 -1.330 7 118 
953.905 ~.158lD~Ol 7 I18 
953.889 -0.81270-04 7 118 
953.889 -0.4 1 130-06 7 117 

N= 7 E = 953.88877 

I 112.889 2.127 7 37 
II 14.997 X).29270-01 8 37 
1114.967 -0.24880-03 8 37 
1114.967 d).2035D-05 8 130 

N = 8 E = 1114.96708 
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in that it required a smaller total number of iterations. The results of applying the 
second approach to the WH problem are given in Table III and the results for the 
WO problem are given in Table IV. 

The theory that has been developed does not apply strictly to the Numerov equa- 
tion because the matrix A in Eq. (27) has a small antisymmetric part and therefore 

TABLE IV 

Successive Iterations for the Eigenvalues of the WO Problem 
Using the Numerov Equation in the Form of Eq. (28) 

1 -5oo.ooo -18.38 6 139 
2 -518.381 -27.82 6 158 

3 -546.201 -18.79 6 45 

4 -564.988 4.4 107 6 41 

5 -565.399 0.52260-02 4 41 

6 -565.394 0.40240-04 4 41 

1 -565.394 0.45420-07 4 62 
8 -565.394 -0.26060-08 5 101 

9 -565.394 4.32600-10 5 132 

10 -565.394 4.24610-12 5 44 

11 -571.048 A.680 4 144 

12 -515.128 -9.309 4 144 
13 -385.037 -17.80 4 155 

14 -602.839 -28.3 I 4 155 

15 -631.152 -22.11 4 155 
16 -653.263 -12.73 4 150 

17 -665.996 -22.86 2 150 

18 -688.859 -3 1.63 2 150 

19 -120.484 -24.33 2 150 

20 -744.809 A.422 2 150 

21 -751.231 -0.2908 2 150 
22 -751.521 a.98 100-03 2 52 

23 -75 1.522 -0.15730-05 2 48 
24 -75 1.522 a.25 140-08 2 49 
25 -15 1.522 -0.88310-12 1 101 
26 -75 1.522 -O.14190-11 1 101 

21 -75 1.522 -0.21420-l I 1 101 
28 -15 1.522 X).24310-11 1 101 
29 -751.522 4.16540-l 1 1 101 

30 -75 1.522 -0.44450-12 I 153 

e de NN MPT e de NN MPT 

N=5 E = -565.3936452093306 

N=l E = -75 1.5224551805060 

31 -751.522 4.12590-08 2 44 
32 -751.522 -0.12530-08 2 148 
33 -75 1.522 -0.27880-l 1 2 134 
34 -751.522 0.38610-13 1 155 

35 -659.629 2.978 2 143 
36 456.652 -0.62140-01 4 143 
37 -656.7 14 4.32350-03 4 143 
38 -656.714 -O.l5OOD-05 4 46 
39 -656.714 -0.61870-08 4 63 
40 656.714 -0.6525 D-09 3 101 
41 -656.7 14 a.835 1 D-09 3 101 
42 -656.7 14 4.10330-09 3 101 
43 -656.7 14 4.27390-09 3 101 
44 -656.7 14 -0.27950-10 3 142 
45 -656.7 14 -0.46960-12 3 62 

46 -656.714 4.26480-08 4 63 
47 456.714 4.2195DTJ8 4 63 
48 -656.714 -0.91800-l 1 4 140 
49 -656.714 -0.14090-12 4 163 

50 -565.191 -0.2034 6 41 
51 -565.191 -0.1989 6 138 
52 -565.390 4.37830-02 6 138 
53 -565.394 4.55550-04 6 64 
54 -565.394 4.80540-06 6 65 
55 -565.394 4.67380-08 6 44 
56 -565.394 4.49350-10 6 164 
5-l -565.394 -0.33660-12 6 71 

N=2 E = -75 1.522455 1804963 

N=3 E = 456.7 143 148096264 

N=4 E = 456.7 143 143062440 

N=6 E = -565.3936446872576 
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the Numerov equation cannot be derived variationally in any simple way. This 
problem can be avoided by arbitrarily symmetrizing A, i.e., by replacing A by 
A= (A + A ‘)/2. This introduces changes of order h4 in the coefficients in Eq. (25) and 
the property that the error in the equation is of order h6 is unaffected because the 
equation is of order h2 overall. The symmetrized difference equation is 

9iYi-I --PiYi +9i+IYi+l =h2(vi-e)Yi~ (29) 

where 

pi = 1 - h2(Ui - e)/l2, (30) 

4i= (Pi +Pi-*)/2* (3 1) 

The methods that have been developed can now be applied to the variational 
quotient (y, A’y)/(y, By). The only significant change is that inner products (y, z) 
that were calculated using the trapezoidal rule when the lowest-order Q. (3) was 
used, must now be calculated with a rule appropriate to the quadratic form B. The 
elements of B are Bi,i = 5h*/6, l~,,~+, = bi+ ,,i = h2/12. The result is that the de of 
Eq. (13) at mesh point M is given by 

where 

4 -= WY,,,Y~,,&, 2 (32) 

(33) 

and 

D:,=Y:.,,s,.,,+~‘:.,,~:.,,. (34) 

The “Wronskian” W is again independent of A4. The quantities s,,,, and s:.,, 
represent the indefinite integrals in Eq. (12) and satisfy the recurrence relations 

s - si.1, + ww5bL+ I +?‘T.v) + %,,I,, I?‘I.,,L l.If+I - 

s2.zfml =s?.\~ + (h/l2)15(~f,,, +~f.,,- ,I+ 2?1,.,, I ?‘2. 11 I. 
s,.,=s2.\.=0. 

Normalization integrals must be calculated as 

(35) 

(36) 

(37) 

(Y, By) = (h/6) x (5yj + J’; , y,). (38) 
i-1 

Equations (17)-( 19) for de,, remain unchanged. 
The results of applying this method to the WH problem are given in Table V. The 

remarks that have been made for the solution of the lowest-order difference equation 
can be seen to apply also to these results. The symmetrized Numerov method has 



TABLE V 

Successive Iterations for the Eigenvalues in the WH Problem 
Using the Symmetrized Numerov Equation 

e de NN MPT 

I 1200.000 -58.72 9 39 

2 1141.280 4.449 9 41 

3 1136.83 1 0.1463 8 82 

4 1136.977 0.2436 8 82 

5 1137.221 0.29 10 8 82 

6 1137.512 0.1241 8 82 

7 1137.636 0.36 120-02 8 119 

8 1137.640 0.227 1 D-05 8 119 

N=9 E = 1137.63956 

9 1126.263 -3 1.80 8 95 

10 1094.466 -56.44 7 95 
11 1038.025 -87.74 7 69 

12 950.280 -35.71 6 44 

13 914.567 -51.21 6 110 

14 863.361 43.94 5 97 

15 799.420 -90.48 5 46 

16 708.940 -66.27 4 85 

17 642.668 -26.37 3 98 

18 616.299 42.45 3 101 

19 553.847 -84.42 3 63 

20 469.427 -63.99 2 63 

21 405.439 A.571 2 60 
22 400.868 0.1194 1 59 

23 400.987 0.45930-03 1 59 

24 400.988 0.65390-08 1 59 

N=2 E = 400.98789 

25 396.978 -75.86 1 63 
26 321,118 -89.96 1 63 

27 231.160 -56.45 1 63 
28 174.708 -11.22 I 62 

29 163.487 a.3 114 1 62 
30 163.175 4.22420-03 1 62 
31 163.175 ~.116lD-09 1 62 

N=l E = 163.17503 

32 511.637 20.11 2 
33 531.744 -0.9187 3 
34 530.825 4.22210-02 3 
35 530.823 4.12890-07 3 

N=3 E=530.82327 

100 
100 
100 
100 

36 
37 
38 
39 
40 
41 

42 
43 
44 
45 

46 
47 
48 
49 

50 
51 
52 
53 
54 
55 

56 
57 
58 
59 

e de NN MPT 

675.804 -69.87 4 101 
675.804 -28.68 4 46 
647.128 -3.859 4 45 
643.269 -0.53510-01 4 45 
643.216 -0.99350-05 4 45 
643.216 4.21170-12 4 47 

N=4 E=643.21554 

754.180 6.204 4 110 
760.384 -0.1293 5 110 
760.254 -0.59440-04 5 110 
760.254 4.12520-10 5 110 

N=5 E = 760.25429 

888.964 -25.3 1 6 109 
888.964 -2.349 6 40 
886.615 a.2329041 6 40 
886.592 4.22280-05 6 40 

N=6 E= 886.59180 

994.152 -85.70 7 69 
994.152 -31.08 7 118 
963.069 -8.744 7 118 
954.325 a.4357 1 118 
953.889 4.96280-03 7 118 
953.888 -0.48750-08 7 118 

N=7 E = 953.88840 

1110.365 4.827 7 37 
1115.191 -0.2245 8 37 
1114.967 4.54580-03 8 37 
1114.966 -0.32080-08 8 37 

N=8 E = 1114.96635 
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required somewhat fewer iterations, but this is at least partially offset by the greater 
complexity of each iteration. The results for the eigenvalues are seen to differ from 
the results of Table I by about one part in 103. On the other hand, they agree with the 
results of the Numerov equation to about one part in 106. 

The results of applying the symmetrized Numerov equation to the WO problem are 
given in Table VI. The above comments on the WH problem apply also to these 
results. 

The above equations are valid only for the boundary conditions y(O) = y(a) = 0. A 
boundary condition of the form y’(O) = ay(0) can be invoked with an error of order 
h4 by following a procedure similar to that used in deriving the Numerov equation. 

TABLE VI 

Successive Iterations for the Eigenvalues in the WO Problem 
Using the Symmetrized Numerov Equation 

e de NN MPT e de NN MPT 
.- 

I -500.000 -18.52 6 139 26 -751.523 4.29320-09 2 52 
2 -518.515 -28.07 6 158 21 -751.523 4.28670-09 2 52 
3 -546.588 -18.61 6 157 28 -751.523 0.22590-12 1 52 
4 -565.202 a.1940 6 41 
5 -565.396 0.19540-02 4 41 N=2 E=-751.5225188235487 
6 -565.394 4.45390-07 5 101 
1 -565.394 -0.47870-08 5 101 29 -660.097 3.487 2 59 
8 -565.394 4.44810-10 5 101 30 456.610 -0.1042 4 59 
9 -565.394 0.41710-13 4 58 31 456.714 ~.1014D-03 4 59 

32 456.714 -0.84290-09 3 101 
N=5 E=-565.3939164025170 33 456.7 14 4.68060.09 3 101 

10 -571.048 a.712 
11 -575.760 -9.396 
12 -585.156 -18.10 
13 -603.258 -28.59 
14 -63 1.849 -21.78 
15 453.827 -12.94 
16 -666.587 -23.43 
17 -689.992 -31.87 
18 -721.859 -23.62 
19 -745.480 -5.816 
20 -75 1.296 -0.2264 
21 -151.522 4.3 1130-03 
22 -75 1.523 4.58650-09 
23 -75 1.223 4.245 1 D-1 1 
24 -75 1.523 -0.18470-11 
25 -75 1.523 4.62930-12 

4 
4 
4 
4 
4 
4 
2 
2 
2 
2 
2 
2 
2 
1 

58 
58 
47 
47 
47 
52 
52 
52 
52 
52 
52 
52 

150 
101 
101 
101 

34 
35 
36 

456.714 4.24300-09 3 101 
456.714 -0.20420-10 3 101 
456.714 -0.10530-12 3 YY 

1 

37 -656.714 -0.50740-04 4 52 
38 456.714 -0.50700-04 4 59 
39 456.714 4.47520-10 4 143 
40 656.714 4.49550-13 4 61 

41 -565.298 -0.965 ID-01 6 41 
42 -565.298 4.95810.01 6 64 
43 -565.394 -0.20300-03 6 64 
44 -565.394 -0.90700-09 6 138 
45 -565.394 4.58800-13 6 137 

N=3 E = -656.11449 14463989 

N=4 E = -656.7144914430166 

N= 1 E = -75 1.5225 188235584 
N= 6 E = -565.3939158804475 
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y(h) =y(O) + hy’(0) + i,‘2h2y”(0) + 1/6h3y”‘(0) . . . . 

y”(h) = y”(0) + hy”‘(0) . . . * 

Eliminating y”(0) and y”‘(O) by using the differential equation gives 

(l-h’(v,-e)/6]y,=[l+ah+h2(v,-e)/3]y, 

as the relation for beginning the numerical solution. To put this into the symmetrized 
form, it should be replaced by 

q,J’, = 11 + ah + h2(7v, + 3v, - lOe)/24] y, . (39) 

Similarly, a boundary condition y’(u) =/I y(a) can be imposed in the form 

qN-,yN-, = [ 1 -/Ih + h2(7v, + 3+, - lOe)/24]y,. (40) 

Also, the initial conditions of Eqs. (37) should then be replaced by 

~1.0 = hy:,oh ~2.3 = hy:,,v/6. (41) 

The more general case, for which r(x) in Eq. (2) is not constant, can be sym- 
metrized and treated in a similar way. 

8. DISCUSSION 

It is clear that if reliable preliminary estimates of the eigenvalues are available, the 
elaborate improvements suggested here are unnecessary. If e is close to an eigenvalue, 
it is found that de is almost constant close to its minimum over most of the interval 
and Cooley’s recommendation for the choice of X cannot be far from optimum. The 
factor of 2 increase in time required to integrate y, and y, over the whole interval 
probably cannot be recovered by the optimum choice of de. 

On the other hand, the methods described here should be effective and systematic 
in problems in which there are no good estimates for the eigenvalues. With the use of 
automatic computers, it may be worthwhile to sacrifice some speed in order to ensure 
reliability, and while it would be foolhardy to assert that the method is infallible, it 
should be more systematic than other procedures. Cooley [5] has noted that 
convergence problems may arise because e may jump between eigenvalues and that 
eigenvalues may be missed and that these problems are related to the choice of X. 
The variational approach to the choice of X and the use of the projected de should 
eliminate these possible difficulties. 

It is possible that the methods discussed here can be adopted to finding low-lying 
eigenvalues of other large symmetric tridiagonal matrices. 
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APPENDIX 

We are interested in the behavior of de, given by Eq. (18) when e is close to an 
eigenvalue e, and X is close to a node x0 of the corresponding eigenfunction 4,. The 
solutions of the difference equation (3) are clearly differentiable functions of e and in 
the neighborhood in question can be approximated linearly: 

yi(x) = Cf(X - X0) + Cfj(e - e,), i= 1,2. (AlI 

(When e = e,, y,(xJ = 0.) 
The Wronskian W is then 

W = (C, a2 - C,a,)(e - e,). (A21 

The second term in 0; in Eq. (19) is then negligible with respect to the first term D’, 
which can be regarded as a constant in the neighborhood in question. Therefore. we 
can write 

Ae,=~rl[(C,r+a,II)(C,5+a,~)+A~y]D~2, (A3) 

where <=X-x0, q=e-e,, L=C,a,-CC,a,, and 

A = x” (e - e;)- ’ qbi(xo)‘. 

If only eigenfunctions below e are projected out, A > 0. 
It is seen from Eq. (A3) that de, = 0 along the line q = 0, or e = e, as it must be. 

It is also zero along the branches of the hyperbola 

(C,r+a,rl)(C,r+a,rl)+A~rl=o. (A4) 

The top branch of the hyperbola passes through (0,O) with zero slope as shown in 
Fig. 3. The bottom branch of the hyperbola is pushed away from (0,O). Along any 
line through (0,O) of the form 5 = bq, 

Ae,=~~[(C,b+a,)(C2b+a2)q2+ALrl]D ?. W) 

For small q, the dominant term is AL2r12Dp2 > 0. This shows that no line through a 
node at an eigenvalue in Fig. 3 can pass through a shaded area for small q. 

ACKNOWLEDGMENTS 

The author is indebted to K. Aashamar, J. W. Cooley, and W. F. Shadwick for various discussions 
and to Professor A. E. S. Green for his hospitality at the University of Florida where this work was 
completed. The work was supported in part by the National Research Council of Canada and the U.S. 
Department of Energy under Contract EY-76-S-05-3798. 



40 JAMES D. TALMAN 

REFERENCES 

I. B. W. SHORE. J. Chem. Phys. 59 (1973), 6450. 
2. C. S. LIN, J. Chem. Phys. 60 (1974), 4660. 
3. F. L. TOBIN AND J. HINZE, J. Chem. Phys. 63 (1975), 1034. 
4. L. WOLNIEWICZ AND T. ORLIKOWSKI. J. Comput. Phys. 27 (1978), 169. 
5. J. W. COOLEY. Math. Camp. 15 (1961), 363. 
6. P. 0. LBWDIN, Aduan. Chem. Phys. 2 (1959). 207. 
7. B. G. WICKE AND D. 0. HARRIS, J. Chem. Phys. 64 (1976), 5236. 
8. D. R. HARTREE, “The Calculation of Atomic Structures,” Wiley, New York, 1957. 
9. E. C. RIDLEY, Proc. Cambridge Phil. Sot. 51 (1955), 102. 

10. J. D. TALMAN AND W. F. SHADWICK. Phys. Rev. A 14 (1976), 36. 


